_ RECHNICAL REPORT NO. IRL-1023

FINAL REPORT

LINC EVALUATION PROGRAM

J. LEDERBERG
L. HUNDLEY

ACCESSION NUMBER)

(CODE}
(PAGES)

7
W \CATEGORY)
P NUMBER)
TMX OR AD
(NASA GR O .

FACILITY FORM 602

|
|

e

N

INSTRUMENTATION RESEARCH LABORATORY, DEPARTMENT OF GENETICS

STANFORD UNIVERSITY SCHOOL OF MEDICINE
PALO ALTO, CALIFORNIA

R{

@7

MARCH 1965




y —~—

FINAL REPORT

LINC Evaluation Program

J. Lederberg

L. Hundley

Department of Genetics

Stanford University

March 1665




FORWARD

This report is a final report submitted to the United States
Department of Health, Education, and Welfare in connection with.
their LINC Computer Evaluation Program. Under their Grant No.

FR 00151-01, the Instrumentation Research Laboratory was sup-
plied with a LINC Computer and some additional accessory equip-
ment. The applications of this computer and its evaluation rep-
resent work carried out under National Aeronautics and Space
Administration Grant NsG 81-60. For this reason, this report

is being submitted both to the LINC Evaluation Board in fulfill-
ment of their requirement for a final report and to NASA as a

|
|
! technical report.
|




CONTENTS

!« Introduction

li. General Use 1-0 Equipment and Programs

i1f. Utility Programs

IV. Experiment-Related Programs and Hardware

V. The LINC Evaluation Program as a Training Technique

VI. Computer Performance

Vil. Conclusion
Appendix A: Selected Programs

Appendix B: Log Book




le INTRODUCTION

The instrumentation Research Laboratory within the Department of
Genetics has as its purpose the design of special purpose instruments for
biological research. This incliudes electrical, mechanical and optical
design. The LINC in our laboratory has been used as a system element in
a number of experimental situations and its use has proven to be both

edu

.
ratinn
[SROT= B )

on to us and experimentaily rewarding.

Headed by Dr. Joshua Lederberg and under the direction of Dr. Elliot
Levinthal, the laboratory has as its primary mission the development of
iife detection systems on a microbial tevel for remote Martian explora-
tion. in oirder to accompifsh this end, a number of different types of
physical measuirements have been investigated in great detail. We believe
that these studies, a number of which involve LINC, wili also result in
new instrumentation and techniques of general laboratory utility.

We wish to request that the LINC be permanently assigned to our lab-

oratory.




e

- Ile  GENERAL USAGE 1-O EQUIPMENT AND PROGRAMS

-

Our LINc has been equipped with a number of peripheral devices. These

‘include a Datamec lBM compatlble tape recorder, a Calcomp plotter, ‘and a

teletype. In the process of being installed is a 4096 word external mem=

£

The Datamec is equipped for two speed (hs and 4.5 ips) two density

- (200 and 566 bpi) operation, with both read and write capability. = These

5fspeeds and densities give us a wide range of data rates. The upper limit

is 25,000 six bit characters per second. The interface Is very simple and
'requtred only two. .cards. One of these would be eliminated If the gated,

N accumulator lines were being used for nothing else.

Programs for the Datamec include those to read and write IBM compatible

- format, generate data tapes from continuous on-1ine input, and to regroup

1@ the input data on LINC tape blocks and then, if desired, to rewr!te these

blocks into IBM format. All of these combinations form a highly flexible

system. Use of the Datamec has completely superseded the IBM 026 key-
punch.

The Calcomp plotter has been:in operatlon.for some time now and has

_ proven, to be extremely useful. :Prégrams'for blottlng all forms of data

"have been written. These include both ordinate and abscissa scaling and
,linear«interpolation. A program has also been written for character gen-

' eratuon which Includes character size scaling and positioning.

- The teletype has proven to be a very good means of getting both program

- and data into LINC and getting hard copy'of both out. [Its major drawbacks

-are its low speed, lack of tabs and that it is somewhat noisy; however, we

know of no cheaper means of getting printed output. Input and output rou
tines .have been written which calculate teletype code from LAP code and
viseversa which take about twenty locations each, so memory usage Is not
excessive. - | | |
The Lo96 word.memory, which should be in operation within the next few
Qeeks,‘will be used both for program and data handling. There will be
three modes of operation which are: 256 word Input and output gulps at

1.




eight microseconds per word and single word input which indexes the mem-

vy
'

ory address register with each input. This later mode is designed mainl
4 g Y

for data handling.

Pit. UTILITY PROGRAMS

These programs include those for program input, assembly, and debugg-

el
1

Cu

irng, for keyboard data input and comgputation and foi data display. Most
of the programs to be mentioned are more compietely described in Appendix
A.

The LINCT system is our teletype program texi input-output system which

has a number of useful features. 1t is tied into a modified LAP which
wiil assembie for the 2K memory.
We have operating on the 1oM 7090 a compiler for LINC which uses a

modified Bal ianguage. Thi

wr
[%2)
~
wn
«t
g__)
&
'
o
I
o

SLINCY, and a program op-

eraling system wnich was wiitten in oLiNC are describea in some detail in

3

the appendix.

Debugging routines inciude an octal to Mnemonic converter and print-
out program, and & progiam which foliows another program through all of
ng to determine which jocations contain instructions and which
contain constants. Tnis is usea with the converter program to get a prop-
er print-out. A print-out of LAP Iii was obtained in this way.

g point pacrage with two word maniissa has been written.
program &nd a usage expianation will be available shortly.
as been incorporated into a desk cailculator with storage
routine. This routine has the usual arithmetic operations as well as
square root, e X, 109e X , sin X, cos X , and 2 X 2 Chi square. It is
arrarged for the easy addition of other arithmetic subroutines. Teletype
input and output and certain manipuiations of the stored data are includ-
ed.

A number of simple aigebraic programs have been written, such as those
for mean and standard deviation, C.i square and other statistical opera-
tions.

Display programs inciude those ‘or point and bar graph display with X

and X scaling keyboard calling of data sets. These data sets may be




manipulated in @ number of ways including inversion, addition, multipli-
cation and rotation.

These are the major programs of a general usage nature now in opera-
tion. The only major programing effort now being considered in this class
is a simple arithmetic compiler based on the two word floating point sy-
stem. A more complete symbolic compiler is a possibility, but due to the
large amount of effort involved will probably not be undertaken for some

time.

IV. EXPERIMENT RELATED PROGRAMS AND HARDWARE

Most of the research in our department is involved witH experimenta-
tion either on a bacterial or molecular level; therefore all of the on-
1ine LINC experiments that have been done have involved physical methods
such as mass spectroscopy, radioactive and fluorescent tagging, fluor-

& counting. An anticipated experiment in-
volves the interpretation of Raman spectra.

The LINC has been directly connected to the output of the Bendix time-
of—flight mass spectrometer. Output from the mass spectrometer is re-
duced as it comes into LINC into mass amplitude and time of occurrence.
The direct determination of mass number is difficult due to instability
in the Bendix's scanning ramp. One means of overcoming this, which will
be tried, is to allow LINC to generate the scann amp by the use of a
mechanical D-A converter which has been built in our shop. This consists
of a 200 step per revolution stepping motor driving a ten turn pot. This
is a very simple system and has proven most useful. This use of LINC ties
in with a much larger system which is a computer program for the direct
determination of compound composition from mass spectra. This work is be-
ing done under a separate grant and the initial program is being run on
the [BM 7090 at the Stanford Computation Center.

The LINC has been used in a number of ways in experiments with fiuor-
escent compounds. The first experiment of this type used LINC as modula-
tor, phase locked detector, and integrator in an extremely sensitivé flu-

oremeter. With integration times of ten minutes, the detection of 10-13

3.




molar solutions of fluorescein with a signal to noise of 15 to | were ob-
tained using a 400 milliwatt 1ight source. This experiment was performed
to determine parameters for a sensitive fluoremeter as part of our effort
to design. apparatus for the detection of life on Mars. A program is now
being written which will determine the best fluorescent system transfer

function for a given material by generating ail possible combinations of

filters, light sources, and phototubes. The data for the components of

this system will be stored as sets on LINC tape.

A system has been built for the determination of fluorescent decay
times in the low nanosecond region. This consists of a fast flash lamp,
photomultiplier tube, sampling scope and LiINC as a 512 channel integrator.
Calculation shows that we will get about itwo quanta per channel per flash.
Our design goal is to investigate materials with decay times on the order
of five nanoseconds. To date, our besi results have been in the 10 nano-
second region. The Timiting factor is the lamp decay time. This will be

improved by the use of a different type of lamp. The LINC has performed

1ic
™

most admirably in this appli

v
t

icn. No external hardware was required ex-
cept the mechanical D-A convertor for driving the sampliing scope sweep.
This experiment is being conducted in cooperation with Dr. Lubert Stryer
of the Stanford Biochemistry Department. A pirogram will be written to get
a best exponential fit to the experimental data so that direct time con-
stant output will be availabie.

Programs have been written for the keyboard input of data from nuclear
counters which determine man and standard deviations as well as sorting
data sets according to size distributions and normalizing the data.

These programs have been in routine use by a group in the Genetics Depart=-
ment under the direction of Dr. Leonard Herzenberg. This group is study-
ing antibody reactions in mice.

These programs have, by the rapid presentation of results, a]lqwed the
experimenters to determine what the next step in their procedure should
be with very little delay, and has therefore increased the number of ex-

periments which they are able to perform by a factor of two to three.




Vo THE LINC EVALUATION PROGRAM AS A TRAINING TECHNIQUE.

In general, the eXperience gained with digital techniques has been of
great value to all of us here. The instruction initially received on
LINC was quite adequate with one exception. [t would have béen very de-
sirable to spend more time on use and misuse of the various 1-0 functions.
ri has been in this area that most of our nonproductive time has been
spent. From the overall point of view, LINC has been a most demanding
teacher in its own right. It has changed and simplified our approach to
many problems. It has also made possible experiments which would other-
wise have been too time consuming to perform.

Several undergraduate and medical students have gained proficiency in
systems programing on LINC. It is an excellent machine from the stand-
point of man-machine interaction but higher level languages would give a

more realistic interaction to sophisticated systems.

Vi. COMPUTER PERFORMANCE

The performance of LINC in respect to maintenance has far exceeded
reasonable expectation. After approximately 3200 hours of operation,
the only failures have been one bad cable connection and two output tran-
sistofs whose faifure can be traced to external misuse. _

The general performance'of LINC in the laboratory has been entirely
adequate and most rewarding. Most of the recommendations that come to
mind must be admitted to be generated by our own special requirements;
however, there are three recommendations which it is felt are of general
interest to most users. )

The first area is that of multiple word arithmetic. Any instruction
changes which would reduce program length and running time would be a
great help. These might include clearing the accumulater on a LAM in-
struction and recovery of both halves of a multiply.

The second suggestion is to make all of the 2K memory programable.

This would be very useful when performing complex computations and




would reduce the running time of a number of programs which we now oper-
ate by minimizing the number of tape transfers involved. A suggested
means of achieving this is being transmitted under separate cover to S.M.
Orinsten at the Computor Research Laboratory. |
Our third point is that a problem-oriented compiler (e.g. artran or
Afyol) would be extremely useful. Even if the compilation were somewhat
slow, the reduction in programing time should still be very large.
Mnemonic print-outs of the compiled program can allow the programer to
see ekéctly what is happening and give him a framework in which to get

machine code zonations.

Vil. CONCLUSIONS

- The concept of what an ideal laboratory computer should be will vary
greatly among various investigators. From our point of view, LINC has
proven to be a very useful system. The careful attention of the design-
e€rs to those points which are most important for the on-line use of a
computer is obvious and most gratifying.

It has become apparent that in the future we will want to have on-line
computer capability even greater than that provided by LINC. Greater
word Tength, higher A-D resolution, larger memory, greater speed and smal=-
ter physical size will be the types of improvements that we will be look-
ing for in new machines. A system such as IBM's 1800 is a step in the
right direction. This desire for a larger capability has certainly been

the result of the use of LINC itself. We feel that future developments
. must proceed in this direction if full advantage is to be‘taken of the

experience gained from the LINC program.




Appendix: A

Selected Program Discriptions




~Double Precislon Floating Point
Winter 1965

o

t. coburn

.....



General Information

1. A double precision floating point word consists of three 1l2-bit
words in the following sequence: exponent, high order word, low
order word. The last two'of these are collectively called the

"mantissa". .
- 2. Exponent and mantissa each contaln a sign in the leftmost bit,
1.e. the 11 bit of the exponent or 23 bit of the mantissa.
3. The mantissa is a fraction between +1 and -1; that is, the
decimal point is assumed to be at the left of bit 22.
4. The mantissa is left adjusted. This means that except for zero
. words, all positive mantissas will contain a 1 in bit 22, and
2ll negative words will contain a zero in bit 22,
5. Integers can and indeed must be used for some of the routines
availlable. These are automatically floated before they are used.-
6. A floating point accumulator(FAG) 1s maintained in locations
1120, 1121, and 1122. It is used in the same way that the )
regular accumulator is used.
7. The other half of any opéraffbn,iS“called the operand or argument.
8. The address of a double precision floating point word is the '
location of the exponent. Integers are addressed as usual.
9. The floating point routines useindex reglsters 12-17. These
reglsters are not restored on leaving the floating point package.
10. Entrance to the floating point nackage is accomplished by
Jumping t9 a three instruction routine located some place in
core Cseegnext page) . '
1ll. After.the last operation code the program exits and contiues
eXecuting regular Linc 1lnstructions.
12. There 1s no rounding off within the floating point package.

AJ




Operand Address —

Instructions for using the package

The following sequence of instructions will serve as an example

of the necessary format.

176

T

200 JUP 375 —e-mmmmmmmm—mm—cm—amas S — =375,
201 0400 (oocerand address) 376
202 4001  (operation code) 377

203 0403 (operand address)
204 4002 (operation code)
205  04C0 (operand address)

. 206 0023" (operation code)

207
210 :

Tais may be a direct address: 400
or an indirect address: 4002

N

or it may be zero.

Lda
0
Jmp 1000

1. In2a direqt address the locsation, 400, contains the exponent
of the floating point word, or an integer as the

2. In an indirect address the index feg
4

corresponding address. Bit 12, the
address 1is indirect.

o
43U

000, bit signifies that the

case may be.

er, 2, refers to the

3. A zero operand refers to the floating point accumulator. Hence, to
square a number in the FAC, one executes a multiply specifying a

zero operand.
Operations

l. Operations avallable are llsted in the following table.

2. The 4QOO;bit in the operation code 15 used to indicate whether
this operation is the last in a series. In the example above,
1f the next location following the code 0023 contained 0400,
thls would be interpreted as "sx1". If the lagst code had been
4023, theh the next location would be the address of an operahd;'

3. Some .operations, fix and sign, are meaningless unless thay are
the Last 1n a serlies since the result 1s left in the regular

accumulator.



Table of codes and operations

Code Operation ‘

1 cla Clear and add operand to FAC. -

2 Add : Add a floating point word to FAC.

3 Com Complement operand; leave in FAC.

k. Mul - Multiply FAC times floating point word.

5 FAC/OP Divide Fac by floating point word.

6 OP/FLC Divide operand by FAC, result in FAC.
7 T+FAC Add an integer to FAC

10 IxXFAC 4 Multiply FAC by an integer.

11 FAC/I Divide FAC by an integer.

12  I/FAC Divide integer by FAC, result in FAC. _

13 Fix - Convert a floating point word to an integer. Result

' is left in regular accumulator. ’

14 Flt Float an integer, result in FAC. ' N

15 Clr Zero put in operand and FAC.

16 Max Compare size of operand with FAC. Larger left in FAC.
17 Min n n " Smaller " "o,

20 SGn If operand is less than zero, -1 is left in regular acc.

' If operand equals zero, O is left in regular acc. ,
If operand is greater than zero, +1 is left in reg. acc.’
21 “incr¢ Increment operand by FAC, leave in Fac_as wells This is’
. l equxvalent to an add to memorv.‘ Sl
22 Sub NSubtract operand from FAC, Result ilefit inJFAC. ‘ J
23 : éto. Store FAC in address of operand Leave in FAC.
2L+ -SSP Set sign of operand plus i.e. complement if negative.

25 -SSM Set sign of operand minus; " AL " " p051t1ve.




[ERERG

‘] Ay

10
NG
1073
1204
10725
1704
10007
1@ 2
1011
1m12
1@13

114

1415
1416
1417
1020
1712

LbAr17
A7 F
JMP 1een

APO T

DAL
ildo

Piek wpe ol‘oe.vavxir

JMP 1026 and oeero:‘\'tov\

O

9

O

O

O

G

O

10722
1723
10024
125
1mM24
1527
1230
1031
1M32
1733
1734
1435
1ARA
1m37
1 A 40n
1741
1042
1L
1ML
11445
Y ALG
1 @aat
10057
17757
1252
1253
10854
10455
17564
1457
1A
1741
1062
1063
10064
101458
1066
1067
1470
1071
IRCNAZ
1475
107 4
12795
1m76
1277

BCOr
6050
STC 1025
HLT
STAr
(4
STC 1
LDa 1
STC 3}
LDAr )
STC 1
LDAT)
STC 1

HILT
STC
DA
ARG
JMP
.DhAar
£0m
ADD
STC
LDAr
17

HLT
JvPp
JM P
JvMP
RS
M
P
JvP
JME
JMP
JmMp
JMP

IMP

1762

17

1013

17

1063
1450
1441
1051
1450
13921
1241
105

1007 §

1177 a)
1543 3)
1252 &)
1525 3)

_‘\ume +0~ \O\ﬂ

'

n—

.va\'cse\" A"‘b / FAc

c ke.c.‘?- fo 'S relurn

F"Loa:t‘ Avy nnd veluen

CLR ' ' o
DA 17 ' o

TR | |
aone ‘ ' 7 o
ANAT ) | -
im72 .

STC 12 | | '
LA 12 ' o
STC. 13S0 Tuwg ‘\‘o A?u’f\'c«l © pexolion ‘

P



Q

LJ L2

L )

A

o,

e R R A e TR R TR

1% %P 153

Y1 o0 MR 1874
1123 GMP 1534

Vios ivp yegY

110S gup 135

1106 gvp 10,64

107 UMP 1453

1hie gve 1557

P11 JME 1544

1112 gMpP 1555

1113 UvMP 1133

1Y 14 SMP V774

1115 UmMp 1137

11186 UvMP 1571

T117 UMpP 1574

1120 o N

1121 a ) kocion of -F\o‘tvms eowif o Cuwa ’\‘ad:o\- Q:AC,>
ez s J

1123 2

]]9_2 (,; } Lauﬁ\ou. o \‘e.a‘)\s't:\‘ A , % Avg)mwe\cl\:‘ LAQ.G-)
1es o J

1126 @

1 ;9_7 “ 2 Localiow &K \"e.cb\s_te\- S.

ine w2

;;j} 4 } RegisTer §, wied \w divide .

32 W .

1133 gMe 1177 ) ¢

1134 Jme 1137 _5 \\“C’V&W\ev‘*

1135 i 144 Fix

1134 v 1474 K -

1137 S&7 12

V140 1027

1147 LDa ’
‘;:? .“,,\{QMIQ Store owd veTuew
1144 DA 13

1145 STAr 2

1146 LDA 14 }

1147 STarg2

1157 JVH 1@51//

1151 SET 12 \\~

1152 @ C

1153 LDA- \

1154 1120 |

1155 COm v |

1156 ADD 1123

ViS7 AZFs ‘

V160 MNP 1166

1161 APOT '

%;2? :\Sﬁ‘r;g L\)P\\Ca\f\. \S \Ol-\‘%e\’} FAC o Al‘ob
1164 SFT 12 -~ -
1165 . '
1166 DA 13

1167 CoOM

1770 Ana 18

1171 AZ@ '

1172 Gvie 1161

1173 Lha 14

1174 COM

1175 ADA 16

1176 JMP 1161 ,

VAT LDA } 3&6\.\/\ vAdd

»
—~~

X

7y



N >———}9m}%
AN ‘
} 2O
1023
o 1204
Lot 1205
L 12724
;CB 1207
- 1217
1211
L™ 1212
~ 1212
1214
: 1215
ICD 1215
1217
1220
;CD 1221
- 1222
: 1723
gCD 1904
1225
, 1224
O 1227
1230
17231
& 1232
1233
> 1234
N 1235
- 12345
2 1237
gf) 1240
; 1241
3 1240
{CD 1243
- 1244
. 1245
O 1544
1247
. 1256
) 125
12592
12553
VaneY _
U/ 1254
1255
12756
O 1257
1260
1261
O 1262
12467
) 1264«
D) 12645
1266
1947
O 1270
1271
1279
() 1RP275
127 4
1275
:) 1276
1277

STC 1241
REIRY)
JMpP 18600
STC 1231

ADD 1120
COoM
ADD 1123

A7 Rt

JMP 1227
ARGt

JMP 1221
STC 12
JMP 1602
JdMP 1613
JMP 1622

JMP 1903
Com

STC 12
JVMP 1433
XSxr 19
JME 1223

N B
J¥iP 1666
SRt ’
] R
JMP 1pdp
VP 1600
6R0 ’

Jvie 1924
JMP 1633
JMP 1735
NOP
HLT

d¥iE 1700
JME 1246
J¥P 1751
JviP 1241
JMP 1710
JMP 1241
JME 1701
JMP 1246
JUP 1600
STC 1316
ADD 11123
ADD 1127
STC 1120
UMP 1756
JMP 1432
JMP 1751

JMP 1566
LDa 137
RORT

aMEP YA LY
YSKt12
GNP 1264
SFETr12
7784

CLR

W e\\a

-

AP% X lec,

—

AT,



1387
1370
1371
172
1373
1374
1375
1376

JYMP 1466
PSR I
Ot
JMP 1841
XKSKT 12

Jvr 1277,
DD 1126
STC 1124
JMP 1712
JMP 1315
JME 1721

) N

JME 1742
JMP 145
JMP 1600
STC 1421
JMP 1756
JMP 1700
JMP 1330
J¥P 1751
MBS 16501
JMP 1164
JMP 1340
JMP 1432
J¥MiZ 1441
JMP 1433

JMP 1613
JYP 1341
JMP 1432

ADD 1 ]26
Com

ATD 112?
ann 1665
STGC 1126
STC 1131
STC 1132
SET 12,
1131

gMP 1622
P 1742
v 1396

dvE 1620
JMP 1666
JYP 1666
JMP 1613
LDA 15"

JiP 1366
J¥P 1700
J¥P 1376
LDA 12

LAAR .
STa 120
S*O

<O 7 i
Jﬁ? Y4020
JMP 1352

SRO '

R S

Divide .Avoa *Qrbb FAC

AN



FEN
R

LA

1/

8

anto

(covlivmed )

FAC

Owide

.

[V

Chec €o Aevo A’roé'vn A&,

TN T N T N "

140D

S , s
n o a — g e = S 80 —~ e SNRSUR Qs EE A A e
T I Mmoo W ) QU QTR 0 Q Qe E e e A T
o c X SND AL g 0D e T e e S D e e g 7 IR IR S B SN S
N e N - ~. v = o © e e [ PR T e ) [ s T
e &~ I T e T RO T T T O <
. . ~ - AN AL <A b
AN oo O T T TR O S R R S N & R T = T S EE I S RIS oA NI N S SN e S5 S (O L S -t R
Qo 0O : - - L e R St Pl PN o ey > PR S SR N
Vo S A D S SR CETNI N SR SR EEIN SRS € S S O RIS S ,x‘ : /w N e R g _0
&G A R [ 7 U T I T 7O I SR BN SR CONEY MRS S VN A B DNR S SR S S B PR .
- - L 4 - E P — - —_
. N - e e v <A YD e S e A 0N N g i e 00T TS D
N < $oe- CYN U 0 s S s 00T N TN S QL ST O )\ = N
,/, «) mﬂ ﬁ & L HM m_d mm o M.V RO G W e N NN NN ,A DRNTa T VONNT SRR O BENS RN AN SRRV AR N S o - /4 o~ 7&.
S > A A e S S, OO g T N NS ON N NN NSNS
- a < [ - SRS SO N N NN NN NN NN 39X NN N 4N ",
SN SEN NN SNNNES OSSN A N E R R A LI

~
»
—
S~
o~
-
s
™
\\J/
N
)
N
S
I
AN
-
~
N
A
I
~~
-/
7~
~
~~
~/
o~
A
~
N
~~,
.
e
N -




Mt s ea s s es s s e
Ui '

AL

0N Y

N

3

)

Y

WL VN

PRIV

W0 L

AU R Y U U LD U L

~N 5NN

S NGO RN |

JbL
RN

[oN AN S NN
W0

N
N

ON

N

O
U
U N
)

91
R

o

O

S non
U non
N

O

[O 2NN

BaY
200N\

[SANV IRU NG LI S]]

Oy O
U

S
~ N Oy
XN

-2

(SN0 IR U 5]
~ Y
~N U N a0

1
-
>
-

- §
HJ40

STC 1512 AV
DD 1121 ' o o o
HLT : L |

JvP 1251 -

Lpa 13 -

SCR 15 A .
JMP 1951 | . | o
LDA 13 . '
SCR 13

AP0
ADD 1720
ADD 1664
JMP 145
JMP 1604 w
JMP 1613 = A
, FAC , S

JMP 1600 /AWG '
¥ 1521 |
JME —
SV 'Slv\Te.cae,*( ~ FAC
BECECIEN 3
JMP 1 Iv\Tc,%o\r X Fhc
JMEP

]

1

JM

]
J
3
J
) \ -
JMP 1604 T
Jvp ;51_3} FAC / T wYeqev ‘
y .

VP 1629

Com?\e_ went

L¢\/r Il "”:;.l -
gl‘vl '-') H i!l m . \\ '.
) N oy we
JMP T4 AN N '
v

g
J¥P 1441 S ' B
NP 1700 ‘ ' S
IMP 1562 , L
CLR , |
J¥P 1mS) : o ~ B ~ :
LOA 153 Stgn ' : ‘ ' ‘
SCR 13 ' . :
APG I :
ADD, 1570 | : -
aND 1720 ' - I
JMP10as : ' o
e TS ‘ SR R
J . .

G 440
R (/15 1
7

Set axgw plus E R ‘ .

JMP 144] Seb dign winwg

.
o~

P

PN



I
1
i
|
!
I
}
'
1
!
|
i
{
'

W Add,

N

-

{ FAC = AP%Y.

444‘\43“,0

\‘\(’,C. b- “CO\" 3@\"0

7
-
4

- \ :
RERURS R N A A YA QA PM

R ] S e e e - -~ -
[ -—
J L R I — .

1
!
7
i

i

1
i
1
)

et e ey e e e e (S O

~
~
]
a4
]
i
7
M

20 C d
R L S O B
CARRS URVARS SNV

3]
-
L
IRt
L,
.
D
!
~
)
i
C
._Jl"}f" q
,
—~
~
G
0
~
)
~
4
C
]
I~
~
]
G
e

oy 8 . e g
S0y 3o -~ = Q= >0 3o
. . 3 .

L
=
S
T
u
1
[

RN A NN SOl T BV N Y J

. (/,,r/.,/..,o”a0,,m,..w.:m..ﬂﬂ%é./ﬂ.;?.ﬁa557//,19,845 =< TS e - -

NSRBIV I oW N O TS TR S S AN A U AU O U S & B S S y g PN TN

o LN .Z.W,mfu.,r,/nzh/h,oﬂu/o/),h W NC NE T B S s B 8 s o NRTORNToNNS NS U VORI O IRV IRV IV SRV
; I AR e I
.

’

i

f
[

LA

LA
L /\'V

)
4

1670
1671

1487
1675




Y

QO
N

~.

h e

»

o

~

NN

~

et

o~

2

7/3_ FAC- V'V\O\‘\hm\'\sci

78

=<

DWW

171

L}R4P Oj

172

1717

I
C

,, M
o QA Q W\ Qo Q [N URAY

Bk N e g ot p v TN s N N
.
S e e L
. A Y
- N b
- . - ' - -
) = - . |\
. .
\. -
\ - -
e
. R .
~ - kY -
- y - .
- ’ .—. ”
I} .
<
\.
!

\e ¥t

S,:'o‘_\e_ » FAC
- FAC

e ST e T ™ M e = I T U}
e e e v e e e e e & e — e — e e S e ~

, e e - S ' coT
L S S GRS S BY RS TS Y o B SR g B B T2 (D «\J\D BN OGNS IEN! <1 ¢
L S L e G e N & R S S N Rt S e o
ALY 3N TS MmN YD SO LG S S s A

1756 SET
7

g

FEME

/q.c),,b./r/, LN A W SORN IR T D BV OIS SN QN U D N e TN e

Q m/ N b I O A B I A T S B R I B Yy YA \D
7./../‘./_,/~/77../_./../7>/:./7717,/1./:_/./N/./././',/ o~ o~
B S S R T T e T S oo S [

1762

O O @ ) O N N a

k neqifive.

) -
\

‘Qme\owe.\:r Avca oY FA;

ARG

U
L C
~ o

N

~
CoOv
cow
JdM

~

1766
177
173

]
i

e

A

77 4

15




A Preliminary Description of an

Jperating System €6r the LINC Computer

¢

Richard K. Moore
Department of Genetics

Stanford University

March 1965




The LINC
The LINC is a binary, 12-bit, 2048-word, digital computer. The core
is divided into eight "quarters", each quarter being 256 words long.
Quarter O contains cells O through 377*, quarter 1 contains cells 400
through 777, etc. LING tapes are divided into 1000 bloéks, each block
being 400 words long. Thus, for example, the tape read instruction replaces

the contents of one quarter of LINC memory with the contents of one tape

block, There are two tape units on the LINC, units 0 and 1.

The LINC Operating Svstem: LOSS

LOSS is based on a highly structured, use of both tape units as well
as the various quarters of memory. LOSS strives to provide a framework
in which communication among LINC programs is very simple, thus allowing
complex operations, such as compiling, to be accomplished through the
successive efforts of relatively simple programs. This framework of
simple cqmmuﬂication is based on three artifacts: (1) the RECURSIVE

OVERLAY, - (2) the BUFFER, and (3) TEXTS.

The ?ECU%SIVE OVERLAY

Under LOSS, tape unit 0 is reserved for a program stack and an
overlay stack. The program stack consists of those programs which are
available to be run on the LINC under LOSS. Each of the programs in the

stack 1is ddentified by a number. Program 1 occupies blocks 11 through 15,

u

%*
From now on, unless otherwise noted, numbers are in the octal system.



2.4

program 2 occupies blocks 21 through 25, ete. The overlay stack begins
following the top of the program stack. During execution, a program
occupies only quarters 1 through 5. Quarter 0 contains a number of routines
waich are used by LINC programs. One of these routines is an overlay pro-
cedure which allows any program in the program stack to be called like a
subroutine. As an example, suppose that there are four programs on the
program stack and that program 3; currently under execution, wishes to

call program 2. 1In this case program 3 merely places the number 2 in the
accumulator and transfers control to the overlay routine. The overlay
routine (1) saves the address from which it was called, (2) writes quarters
1 through 5 on'tape (at the top of the overlay stack, say blocks 61 through
65), (3) reads program 2 (blocks 21 through 25) into corg'and (4) begins
execution at cell 400. When>program'2 has completed its execution (which
may, haveg included overlays of other programs, in which case program 2 would
have been writtea on blocks 71 thyough 75) it merely returns control to the
ovaerlay routine which reads back in program 3 from the.overlay stack and
returns gontrol to the cell saved, at step (1) above.

. The, power of this system is shown by the fact that in the preceding
exanpLe program 2 was able to perform its function without knowing what
progyam had called it nor in what depth of recursion the overlay process
was currently involved,

N 2
The BUFFER |

Whi;e the elements of mathematical or logical operations are variables

or arrays (single cells or blocks of consecutive cells), the elements of

such opexations as imput—-output or of ‘nter—-program communications are




e e e s e e e et

3.

LISTS, where the elements of a LIST are either variables or alphanumeric
STRINGS, 1In oxrder to allow for the manipulation of such LISTS, LOSS includes
a general purpose BUFFER (beginning at cell 3000) together with two procedures,
PUT and GET, located in quarter 0. The BUFFER is a pushdown stack whose unit
of storage is a RECORD. The arguments to the PUT procedure are one or more
LISTS; these LISTS are combined by PUT to form a RECORD which is placed on
top of the BUFFER. Similarly GET($S$L) causes the variables of the LIST L

to assume the values found in the top RECORD of the BUFFER , which RECORD
is then erased from the DBUFFER. Since an OVERLAY affects only quarters

1 through 5, the canonical way for programs to transmit parameters to each
other is by means of the DUFFIR. - a N

3 o . ‘

TEXTS

¢ LOSS reserves tape unit 1 for the storage of TEXTS. A TEXT is a group
of cpmsecutive tape blocks preceded by a few special code words and a five
charactey name. TEXTS are grouped together to form BOOKS; each BOOK being
100 ;tape,blocks long. Thus BOOK O comprises blocks O through 77, BOOK 1
comprises blocks 100 through 177, etc. The O'th block of each BOOK is an
indgx whgchvcontains the names of .all the TEXTS (in alphabetical order) in
itsyBOOKﬁtogether with their sizevand initial blocks. This formalism is
not @ean; to restrict the kind of information which can be stored on tape,
but rather makes it possible for allocation of tape storage space to become
automatiq and somewhat resistant to destructive over-writes. At the same
time .a block number together with the first two letters of its name become

a concisg, as well as a securely redundant, way to refer to TEXTS.




R s

The LINC MONITCR

The LINC MONITOR is, by convention, program 1 on the program stack.
Its only capabilities are to accept instructions from the typewriter, to
perform simple operations upon the buffer, and to overlay any of the programs

on the program stack., Its specific operations are:

DISPLAY = n an octal integer; the n'th RECORD of the

BUFFER 1is displayed on the scope.

TYPE n The a'th RECORD 1is typed.
EXECUTE n ; The n'th program on the stack is overlayed.

; ERA%E n n RECORDS are erased from the top of the BUFFER.
PUT (L) ‘ The LIST L is placed on the BUFFER. L  consists

- of octal integeré and alphanumeric STRINGS. A

STRING, in this éense, begins with the character

" and is terminated by %4

Since LOéS itself includes a method for referring to and loading programs,
i.e., the OVERLAY, the MONITOR does not require a 'loader" or a list of

i
available "systems'".
¢

Richard Moore
March &, 1965



e s e A o S e e 8 e A g S 4 g S e e e o T ST S e Ty T e 2

BLINK

General Description

BLINK is a version of Subalgol designed for use with the LINC computer.
Programs very similar to Subalgol programs are translated on the 7090 by the

BLINK compiler (which is written in Subalgol), Into relocatable LINC code.

Reserved Word Changes with Semantics

3LINK has no "library procedures', though it retains all of Subalgol’'s

"intrinsic functions". The following Subalgol reserved words are without
special meanipng in BLINK: ) ' A

STOP, SHLT, SHRT, EXTR, STATEMENT, WHILE, SEGMENT, MONITOR, STEP,
NPUT, OUTPUT,'TRACE,Mﬁ?RECISION, LIBRARY, CARDREAD, PRINTOUT,
CO&PLEX, RE, IM, WRITE, READ, SQRT, LOG, EXP, SIN, COS, TAN,

" ENTIRE, SING, COSH, TANH, AﬁbTAN, ROMXX, ARCSIN, ARCCOS, RCARD,

READM, WRITEM, CHECKM, MOVEM, MOVEFILE, ENDFILE, REWIND, UNLOAD,

4

s
F

LAGYM, etc.

The following reserved words are introduced or redefined with BLINK:

O ;
A. ROTL, ROTR, SCLR H. INCR.

' ,B. BTCLR, STCOM, STSET I. OVERLAY
;C. LDA J. STRING
‘D. STA K. LIST
“E. DO L. PUT, GET
_F. REPEAT M. RESTART
.G. RDC, RCG, MTB, WRC, N. *GETCOR

WCG, WRI, CHK, RDE, 0. EXTERNAL



II.

I1, 12, ... I7
M, MF, M
I11, I2I, e... I7T

POINTER

Corresponding Semantics

I.

ROTL(N,OPERAND) : Intrinsic function; arguments type integer;
result type integer; corresponds to ROL instruction; as in later

intrinsic functions, the effect of the i—bi;fis obtained by using
T L N

_glvalue of N > 17,

BTCLR(MASK,OPERAND) : Intrinsic function; types integer;
corresponds to BCL, etc.; as-with ROTL class function, a constant
first argument naturally reduces length of resulting code.
LDA(<arbitrary arithmetic expression>) : Expression is cal-
culated and placed in accumulator; if of type floating, it is
truncated to an integer; useful in connection with DO and STA
as mentioned below. :
STA(<simple variable>) : Contents of the accumulator are placed
in the simple variable.
DO(<integer arithmetic expression>) : Expression is evaluated,
treated as & LINC instruction and executed, e.g.,*

LDA(I)$

DO("470")$ COMMENT AZEiS$

GO TO LS

STA(D)S .

% Within BLINK examples, numbers are decimal unless placed in double quotes.

i r
i




[ = et e e e e S aa

e e S A S e b b b e

is identical in effect to:

EITHER IF I EQL 0$ GO TO L$

OTHERWISE$ J=1$
The DO function, however, is of only dubidus value as a tool
to create tight code; its real purpose ig to allow the use of

external device communication instructions in BLINK programs,

© @eZasy pPR, SNS, etc.

REPEAT (<integer expression>)$ <statem¢nt>$ + Identical in
effect to: -
DMYl=<integer expression>$

!

D FOR DMY2=(},1,DMYL)$ <statement>$ N

except that the REPEAT loop is more efficient and does not

change the Qéiﬁénbfbany variable in its indexing.

RDC(i;u,QNMBR,BNMBRX : Identical to LAP, expept that i and u

are represented by &0 or 1.

INCR(<expression>,<variable>) : Identical in effect to:
<variable>=<variable>+<expression>

except that if the variable is subscripted, INCR calculates

" the subscript only once and . INCR is a function having the new

value of <variable> ias its value.

OVERLAY<integer expression> : The OVERLAY* routine is entered
with the integer expression . in the accumulator.
STRING<identifier>(ﬂ}nteger;)=(<élpha string>) : The STRING
declaration is identical to‘the ARRAY declaration, except that
only a single dimens;on, and no irregular subscript ranges, are

allowed, The effect of the ;STRING declaration is different in

* The reader should be familiar wish LOSS at this point.




N.

e e T

g i S A W S e

T 4.

that the zero'th position of the STRING (even though not‘requested
in the declaration) is reserved and filled with the size of the
STRING, this information being necessary to the PUT and GET(‘
routines. STRINGS may be manipulated word by word, as are ARRAYS,
throﬁgh subscription. Thus S(1) refers to the first and second
characters of the STRING S.

LIST : The LIST declaration is identical to the Subalgol OUTPUT
declaration except that a STRING name (followed by empty parenthesis
is allowed 'as a LIST element, and fulfills the role served by the
alphanumeric insertion phrase in Subalgol. A LIST, however, is
somewhat more elegant than a Subalgol INPUT or OUTPUT- list since
q;LIST can be used for either input or output (i.e., as argument
;f either‘éﬁTméf"CErg;"and includes the types of its elements,
therefore needing ng accompanying FORMAT (which concept therefore
fails to exist in BLINK).

PUT,GET : These axe simply procedures (always in core) which

can have any number of LISTS as program reference parameters.
RESTART : When several BLINK programs are to be compiled during
the same 7090 rua, ;he non-last programs use RESTART to terminate
compilation rather than FIN}SH. RESTART reloads the BLINK compiler
instead of returning control to the monitor.
*GETCOR<integer><identifieri : This is a control card recognized
by BLINK. #*GETCOR is similar to ﬁESTART, except that after
completing the compiler output, the indicated disc file (rather

than the compiler) is loaded.



5.

O. EXTERNAL PROCEDURE, EXTERNAL SUBROUTINE : These declérations,
identical td those in Subalgol, allow linkages to be created on
the LINC between BLINK subprograms and subprograms created by
means other than the BLINK compiler.

II.

_ A. Unlike Subalgol, BLINK has reserved variables. Il through I7
(index registers), are simple variables of type integer with
absolute address 1 through 7, respectively. These variables
are GLOBAL and their values are not restored after an overlay. -

B. M, MF, and MH are GLOBAL argays with absolufe base addfess of

f N
gf‘ Their types are .integerj, floating, and hélf—word, respectively.
&hese are used_thgpeag aévgntage together with I1 through I7:
M(I1) = M(I2)$ results in the elegant code
LDA 2, STA 1
c. IlI, ... , I7I are psed in conjunction with the M() and MH() arrays
in order to referencg consecutive words, or half-words, of core. JK

As an example, the following statements replace the contents of

_quarter 5 by the contents of quarter 4:
I1 = "3777" ; 12 = 12377" ;
REPEAT "400" ; M(IZI) = M(III) H
COMMENT LDA;I » STALZ 3

Thus the value of thg indicated index register is incremented

before it is used as a subscript. When the above program is

completed, Il will contain "2377" and I2 will contain "2777" .

(It is a quirk of che LINC that the core is logically divided

into halves; thus 3717 is the predecessor of 2000 and 1777 is

the predecessor of :0.) 2

;

R




In the case of half-words, index registers are incremented by
4000 rather.than by 1. Thus if an index register were stepping
through the characters of quarter 4, it would assume successively
the values 2000, 6000, 2001, 6001, 2002, etc. The 4000-bit
indicates the right-half of the words
An index register can be made to point at a variable by a statement
| - - of the form InI=<variable> . The code generated is:
SET i n |
<variable location>
The‘foilowing program places the characters of the STRING S() into
quarter 7, putting one character (right justifiéd) into each word.
STRING S(20)=( alphg string );
I7I="3377";( . )

COMMENT: There is ctanonical correspondnece between
registers and quarters.

: 3
I12I=S(0); I2=I2+"4000";

\ b '
REPEAT 40; M(I7I)=MH(I2I);

COMMENT: LDHi2 , STAi7 §
D. POINTERis that cell (LISS”) ia QUARTER 0 which points to the top
| of the BUFFER. Thejétatemeht * POINTER=M(POINTER) would erase
one record from the ﬁUFFER.‘ If we assume that the top record of
the BUFFER begins wfth,an aiphabecic item, then the statement:
[2=M(POINTER)+"4001";
would allow MN(IZI)vio refeéenca successive characters of that

first item.




U ST AU . e

= —. g o

APPENDIX 1: OQUARTER O /1 indicates data location

AAAR 16 m10n STC 16 - 9200 STC 210 n3ne SETr11
PAA] CLR @1@) LDAT16 M2r1 ADD 17 man1 o
Ar02 STA . m1e2 SCKR 6 n2mn2 STA 11 A302 LDAar 1l
PRI 3140 - P1M3 STC 15 nen3 LDAr 13 NIMR HSjt
PAML4 STA CMI04 LDA 16 w24 STAT LD N3VaL 611G
ANAS 3000 M105 RBRCLt N2?S XSKt 17 W35 CUM
nAZ06 RCG _ P16 TT0nn - w2n6 JIMP 203 w316 eDD 11
2RRT 4011 ‘ @107 ADD 117 n2nT LDAT o m3n STC 301
AR IMP 407 @112 ADD 17 0210 0 : A31v Lbas 1l
AMYT 1 HLT . @11l JmMP 113 - m211 STAt 11 n311 STAr13-
S22 HLT T M112 LDAT17 n212 JMP 160 M312 XSKt17
fp13 KHLT - ?113 STAt16 M213 JMP 231 . w313 JmpP 310
A1 4 HLT @114 XSKt15 GET 9214 LDA O N314 JgMP 231
7015 HLT ' M115 Jmr 112 T 9215 0 W315 HLT
AM16 RHLT . @116 LDAt - w216 STC 176 P316 HLT
A217 HLT @117 6001 n217 JMpP 20 m317 HLT
SAVE P20 SFT115 : m12m™ ADD 16 /n22¢ STC 3m1 m320 HLT
ne2T 3000 . ?121 STC 122 . 0R21 JMP 154 w321 HLT
AP22 LDAr . n122 JMP 0 ope22 pZEt ‘ n322 HLT
MP23 1776  REPEAT @123 LDA ¢ EMPTY. 223 HLT ‘ ¥W323 HLT
nn24 ADD 0 7122 o ¢ w224 STC 301 6324 HLT
mm2s STAT1S° . @125 STC 210 225 JMP 175 B325 HLT
nre6 STC 16 m126 Jwp 2m LST.0P @226 STC 243 %326 HLT
AA2T LDAT16 2/ m127 SAMtT1S n227 ADD 0 naA27T HLT
2PN ROLf 1 /2130 HLT 10 n237 STC 271 330 HLT
#m31 SCR 1 . /®?131 STC 136 9231 JMP 20 w331 HLT
An32 STC 14 " @M132 ADD 2}” /7232 ROL 3 w332 HLT
?@33 LDA 14 M133 JMP T4 /7m233 STC 276 w333 HLT
N34 STA®1S /M134 JurP 1502 n2324 Jup 271 W334 HLT
AP35 L7Et /®135 HLT | GET.CL ©235 ADD 0 “335 HLT
"n36 JMP 27 /7136 HLT ° . P36 STC 243 RETURN ©u336 JMP 46
@e37 LDA . 0137 LDA?I? ' 0237 JUP 154 M337 STC 34}
AnLm D) L mam azZE - p24m STC 155 P340 RCG
onsl S§TAT1S ‘ A141 APO LYLCL R4l JuP 46 . 0341 0
a2 Lpa A142 Jup 1507 0242 CLR N3 42 JMP Y
rna3 15 ' m143 COM  © A243 JMP novauAv @343 AZEY
Mos4 STC 91 o m1s44a STC 1@ STRING w244 ADD & 344 JmpP 336
n0as JvMpP *116 m145 JMP 135 L ne4s JMp 14 2345 APQ
RESTOREM46 LDA STEP M146 XSK1t10 ‘ /mzas JVP 1601 w346 JivP 363-
T an4T @ A1 47 JMP 135 /0247 HLT »347 STC 17
aMSA STC ;73 EXIT 2150 Lpa ! . 1250 LDAt {7 %357 ADD ¥
mAS1 SET 15 . m151 136 . = @251 STC 13 W35%1 STC 342
amse 21 ' m152 STC 243 n252 ADD 247 © . B3S2 JMr 29
AMS3 LDA 1S 1S3 JMP 241 »253 STC 271 / ¥»353 SCk 2
, QAS4 A7FE T 154 SETt1L - N254 JIMP 46 '/ #3554 STC 356
T EMPTY @55 HLT POINTER2155 3140 N25S LDA 13 n355 vCGt
TS5 STA m156 LDA 1L P256 COM W356 41}
nms7 21 7 M1ST JIMP 7 - _ 7257 SRO : #2357 ADD 130
nme?A STC 15 mi6m LDA . S PRen 276 “36% ADD 356
@61 LDATIS m161 11 . - P261 ADD 264 @361 STC 3%6
62 STC 14 - ?162 STC 155 n262 JMP 274 - w362 LDA
Am63 ILDAT 14 @163 JuP »  LST.EL 2263 ADAt ‘ »363 17
BM6a ROL T PUT P164_LDA C 0264 1776 V364 ADAT
2m65 $CR .1 2165 0 S n265 STC 13 w365 7770
nR66 STC ;16 7166 STC 176 . 1266 ADD ® . 0366 AROT
AR6T LDATIS 2167 Jmr 154 TM267 JMP T4 n367 CLr
GaT?n STA 16 ' w70 Loa 3 - /9270 JMP 1601 »370 ADAT
an71 LzFr : 2171 1) T /0271 HLT ‘ w371 7
AnT2 JMP 63 o172 srAr1q /0272 JnP 46 7372 ROL 3
; RT3 IMP 0 M173 . MP 160 ~ 3273 LDAt 17 7373 ADAT
" PARAMmm7 4 ADD 23 7174 (O™ . - @274 STC 17 . . 0374 40mM1
= nwa75 STC .17 ' ”175 STC 276 »27S SRO*t ‘ n375 STC 377~

MAMAT AL AND (A MY 74 "mw ! [e3e e A" PR



APPENDIX IT:; LOSS Character Codes.

CHARACTER CODE CHARACTER CODE
00 A 41
! 0l B 42
u 02 ¢ . 43
i 03 D Ll
$ ok E ks
A 05 F L6
S & 06 G L7
' 07 H 50
( 10 I 51
) 11 J 52
* 12 K 53
+ 13 L 5
ey 14 A M. 55
T - ' 15 . - N 56
. 16 0 57
3 T 17 P 60
v 720 Q 61
1 A R R 62
2 22 - S 63
3 23 T 6L
& 24 U 65
5 25 \'s 66
6 26 W 67
7 27 X 70
8 30 Y 71
9 31. Z 72
: 32 (carr. ret.) 73
; 33 , (end of text) ~ 74
< 3L
= 35
> 36 code derivation:
-1 : 37 -
3 . 40 . LDA /
. . teletype code)
- ' ' : coM
. ADA i
0277

" SCR L



Appendix ITI: A Detailed Description of LOSS, Especially QUARTER 0.

SAVE AND RESTORE:

These routines govern a push~down stack whose presence allows the other

routines of QUARTER O to be recursive.

JMP SAVE
LOCATION
LOCATION2

3

LOCATIONn+4000
capses ithe n locations Eogether with thgir contents to be saved on the top
of the ?ush-dbwn stack. The call JMP RESTORE causes the topmost list

. . . N .
of locations on the stack to be restored to their former contents. This

push-dowyn stack occupies cells 300 to 3140 and is called the SAVE-BUFFER,

as opposed to the PUT-BUFFER whigh begins at 3140,

PARAMS :
Consider the BALGOL statement:
P(3,Y$ZSL1,L2) . . . (a procedure call)

which wquld be equivalent to the,following LINC code:

: LDA 1
Y
: STC*+3 .
- - JMP P
. 0003 Ty
0000 '
3 Z
) JMP L1
JMP L2

Value parameters are thus represented by their values in the calling sequence,

name parameters by their addresses, and program reference parameters are

)

preceded by the JMP prefix.

1




The heading of procedure P() might appear as follows:

P: LDA
0000
JMP PARAMS
7405
R: 0000
0000
0000
LDALIY
} STA list for Z
LDALiI7 i ,
- . } STA list for L1
etc.

Where 7405 derives from the formula 100(76 -~ no. of value params) + (no.
of params), R will be assigned the return address for each call of P() ,

and R+1 and R+2 will be assigned the values of the two value parameters.
Py : N

Index registé; 17 is left by the PARAMS routine so that tﬁe non-value para-

meters can bé’éonvenientlqub;ained and stored where required in the body of

PN

PO).

(R}
2

REPEAT:

The program

: . JMP PRPEAT {
JMP PAST

.X< A } code

) ‘ JMP STEP

t P(AST: etc. 1

causes 'code' to be executed 5 times. REPEAT is completely recursive (i.e.,
many REPEAT loops may be nested), and is the sole user of index register 10.
A RgPEAT loop cén be terminated oﬁly by éompleting the full number of iterations,
or alternatively, by executing thé instruction JMP EXIT within the loop. 1If

the count parameter (5 in the above example) is zero or negative, the loop




is not executed at all.

PUT and GET:

These can best be explained through an example. The following program

will replace each item in the LIST L2 by the corresponding item in the LIST L1.

A,B,X,Y, are variables and S1() and S2() are strings. First, the Balgol

statements:

4 4
Next, the corresponding LINC code:

STRING S1(5)=('ALPHAS'),52(5);
LIST L1(4,B,S1()),L2(X,Y,S20));
PUT(;;L1);GET(;;L2);

etc.

" JMP PUT

JMP L1

JMP GET -wee

JMP L2
JMP GET.CL
etc.

L1:ADD O

JMP LST.OP
LDA1L

A

JMP LST.EL
3776 . . .
LDAL

B

JMP LST.EL
3776

JMP STRING
S1

JMP LST.CL

L2:ADD O

elCiens
JMP LST.CL

§1:0005

4154
6050
4163
7474
0000
7474

§$2:0005

0000
0000
0000
0000
0000

7474

7]

(control word; .the first digit is type: 3 is
integer, 7 alphabetic, and 1 floating. The
next 3 digits contain the complement of the
size of the item.)

w

(string size)

>

(end coée)

('extra margin' end code)




The BUFFER:

The BUFFER has a linked-list structure, the top of which is POINTER
‘ (cell 155).. If in the previous example we assume that A and B have the
values 7 and 24, respectively, then after the statement PUT(;;L1) , the

BUFFER would have the following appearance:

LOCATION/CONTENTS
0155 3154
3140 0000 . . . null contents denote BUFFER bottom
3141 3776
3142 0007
3143 3776
c : o 3144 0024
. B 3145 7771 N
1 3146 4154 ; i
“ 3147 6050
L 3150 . 4163
3151 T474 e
N 3152 0000 : « -
3153 7474
] 3154 3140

If GET is ever entered when the BUFFER is empty, i.e., when location 155
contains 3140, then a halt occurs at location 223; if RESTORE is called when

the SAVE-BUFFER is empty, a halt occurs at location 35.

OVERLAY :
When it is desired to OVERLAY a program from the stack, the program
number is loaded into the accumulator, and JMP OVERLAY is executed. When

a program has completed its function and wishes to return to its caller,

JM@ RETURN is executed. OVERLAY Q is equvalent to RETURN. The sequence

1 (case 1) LDAL 3
0005

L s JMP OVERLAY

JMP RETURN

-

is much more efficiently accomplished by;

w
-
-



. . ’ (case II) LDAL
N 7772 (i.e., =5)
) JMP OVERLAY
for in the second case, the present contents of core are neither writtenm on
tape nor read back in when program 5 is finished; rather program 5's RETURN
is placed on the same level with the RETURN appearing in case 1.
If an argument of OVERLAY is greater than_the size of the program stack,
then the last program on the stack is loaded; thus a copy of the MONITOR
is usually in both the first and last poéitions. If RETURN is called when the
OVERLAY stack is empty, a halt occurs at location 55 (since RESTORE will be
spuriously called).

TEXTS: . \

2 . |

., The, first two words of the Q'th block (the index) of each BOOK are

. block mo. (0,100, or 20, etc.)
: | 4253 ("BK')

) ; 1
Each succeeding group of four words are TEXT entries

2 B ]

char1 / _charz‘

! ) €

— char3 / char4

N T !
char5 / size (i.e., length in blocks)

B initial block _ .

3
The end of the index is denoted by a zero where the first two characters

of the next name would be. A -

Each text is headed by the fqllowing, four word code:

char char )
1 / 2 ) !
g " - -
char char, .
3 B 3 / 4 %
. char5 / max. size -
. current size/ type _ )

The éurpése of having types is for file p;otection; when some program is

written which will create a special kind of TEXTS - it can, of course, use
.'1 - y )

e

i



use any of the 100 available types. Thus far type 0 denotes a standard
alphabetic TEXT (using the half word codes in Appendix II), and type 41 ('AY)
denotes an 'absolute' TEXT, i.e., a TEXT whose first block consist of a

header alone and whose next 5 blocks are an absolute program ready to be

placed on the program stack.

~
P

SN

)



Appendix IV: How to Run a BLINK Program.

The BLINK3 compiler is stored in the disc files of Stanford's 7090
computer. In order to use this compiler, it is necessary to prepare a

card deck as fbllows:

No. 1 Card: SYSTEM : F-INFO
- TAPES ¢ Mount on A3, at low density,
a tape which can be removed
from the Computation Center.
No. 2 Card: SYSTEM : F-INFO
r i Control Card: :Cols. }~6 : BLINK3 file number (changes
) ) periodically), right justlfled.
Cols. 7-11: BLINK" h

There s%ould follow a BLINK sour;e deck} This deck should be terminated by
a &ﬁSTA%T, FINISH, or GETCOﬁ.éard. _____ If ; RESTART terminator is;used, it should
bezf0112wed by another BLINK progrém.

The ougput produced by BLINK3 will be on the tape which was mounted on
unit A3. This output is quité similar to that produced by the SUBALGOL
compiler, i.e., listings of the source decks, diagnostic messages, symbol
tables of the cémpiled programs (these being especially useful for console
deéuggiég).- In addition, howeveé, the gﬁpe will contain the actual LINC code
prodﬁced by the compiler, 7

s Ifino compiler error messagés are p%oduced, the tape is brought over to.
the;LINé, mounted on the LINC's tape uni%, and read by an appropriate LINC
proérami One such program merelx searches the tape, ignoring all that it
sees, until it comes to compiled.code. That code is then transferred to
the; LINC tape, unit 1, in the form of a TEXT,

2 One of the principle drawbacks of the BLINK3 system is the means by which

information is transfered from the 7090 ro the LINC. Not only is it incon-

A
153 e -
) » v K




venient to have to physically travel to the Computation Center, but jobs
requiring sbecial tape handling are not given top scheduling priority on
 the 7090.

The BLINK4 system will employ an electrical connection between the
LINC and the Computation Center's PDP. The BLINK programmer, instead of
preparing a card deck at the Computation Center, will prepare a TEXT on the
LINC. When completed, this TEXT will be sent to the 7090 via the PDP. The
first line of the TEXT will actually be the No. 2 card expected by the 7090
monitor. Inétead of using tape A3, the BLINK4 compiler will send its output

; ¥

directly to the PDP, which will xelay it to the LINC. The tINC_iq\turn will
write the output on IBM tape. The tape can be examined on the LINC's scope
and never need be listed. ~ If-the .tape contains error messages, then it is

only necessary to alter the original TEXT and re-send it to the 7090. If

there are no error messages, then the procedure becomes the same as under

ke

5
s

aa
t




THE LINC TELETYPE MONITOR SYSTEM
) LINCT

The System consists of a monitor which accepts Macro-instructions
and associlated octal parameters from the teletype.and separately coded
programns which are executed to acheive the désired result and return to
the monitor. The requirements to use LINCT are a standard LINC and |
a Teletype Corporation series 33 teletype attached to relay #0 and
External Line #0. Tape requirements are Blocks 200 and forward.on
unit 0, as the system is followed by an indefinite scratch area a
practical upper limit of 277 is satisfactory.

The monitor is started b& an 0700 0200 in the switches and a
START 20. A return, line feed is the signal that the monitor is
ready to accept input. The operator then types a 2 leiter Macro code
followed by the appropriaﬁé octal parameters and unit numbers (binary only),
Commas separate fields and blanks are ignored., All parameters need
not be explicitly specified as they are initially defined as zero;
however, as unit 1 is desireable as a library tape, unit numbers are
assumed as 1 unless a O is typed in the field (in some cases a , is
necessary to Yopen' the field, but once a field is.epened 1 is assumed,
unless zerois typed, ,, means l). An error in a calliing seqﬁence A
(e.g. illegal macro code, something besides 0 or 1 in a unit field,
a non-octal digit in a octal field, or too many parameters in some cases)
will result in a NO being typed back followed by a carriage return, line'feed>
signifying ready status for a new line. The RUB OUT key is interpreted
as an illegal charachter resuliing in the NO and may be used to delete the
line. The RETURN key effects execution of the Macro.

The following pages contain write ups of the Macros with descriptioné |

and calling sequenceé. Also a page of actuzl teletypesoperation,

o Y




1. Inpat  Type: IN n,u,x

This program receives alphanumeric text from the teletype and
record it on tape in succesive blocks beginning at Block n, Unit u
(initially assumed 1).
Input Description: All alphabetic, numeric, and special charachters are“
v&lid except ? which is ignored. The RUB OUT key will delete only the
linc currently being typed (multiple depressions have no effect on the
text). Upon depressing it the program will do a carrigge return, type
7 X's over the junk that is deleted and proceed to a new line.'
To end a line, press RETURN. The program gives the line feed when
ready to accept a new line (usually immediate, but delayed when writing
tape.) To terminate input, press EOT (CTRL & D keys) immediately
following a RETURN, at any other place a NO is typed back and the EOT is
iznored. The program after an EOT will Uribe out the remaining text
and type ﬁhe message: LAST BLOCK USED IS 7%t for tape logging purposes.
Control is then returned to the monitor.
Line Nwabering: If x#0 numbering is suppressed. If x=0 (normal) an
octal line number for the preceeding line will be typed every eighth line
beginning afier line zero. The number is preceededdby = to avoid confusion
with the numerous 4digit numbers that appear. )
Cutput Format: The first two words of every block are 75758 , the third
word is negative if the block is last in the text (never looked at in the
system but might be of value). The text begins in tﬁe left half of the
fourih word and continues by LINC half word indexing through the entire block.
The end cocde is signaled by a 138 followingsa 128 {EOL code}. This |

vlaces the restriction that the charachter \ cannot be first in the line.



2. Type (list) Type: TY n,u,Ly,L,,N,,%

Type will list the text beginning athlock n, Unit u (initally
assumed 1) under control of the remaining parameters.
Normal Format: If L1=L2=Nc=x;0 the printed output of the entire text“.
has the same format as the inpﬁt listing.exceptvfor deleted lines.
Unusual Formats, Control Parémeters:
Ll : Begzins printing at line number equal w Iy

L Stops printing at line number equal to L2 ;however if L,=0

2 ° _

 the entire text-after L, is printed. Either L may be greater than

the last line number meaning equality to it.

Nc : Prints the first N charachters per line. Usefpl for quick and dirty
listings to get line numbers after alteratvions.

% ; x%#0 suppresses line numbering.

Notes: I a block read does not have the 7575 text code a NO is typed and

irmediate returm to the monitor is made. If the line is longer than 6510

charachters, the program will start a new line on the teletype and

continue printing the same line oi text.




3, Group Type: GR N1,UL,N2,U2,N3,U3,ee00ee.00,Un :

Group will group the n texts at Block Ny, Unit Ui into one text
and store the result at the System scratch area (aroﬁnd 240 depending = -
on the edition being used) on unit 0. The main purpose of this program .~
is 1o prepare miltiple texts for assembly. From O to 1748 texts may be: 
called for. Grouping in equivalent to catenatioﬁ, i.e. the first of |
text I follows the last line of text I-1 and the last line of text I
is followed b& the'first line of text I+l. Text 1 follows nothing and
text n is followed by the text end code. - |
Operating Notes: A 10 is typed if any block read lééks the text code.f
- 4tihithe end of the grouping the message :1i m BLOCKS GROUPED AT 117
is written before return to the monitor. im is the number of blocks
-writﬁen at the beginning of the scratch area which is given in the 127,
Caution: Only a one block buffer is used so nothing ﬁay be inserted in £ront of

the scratch area ltext t may be appended.

=

re Copy Type: CP m,nl,ul,né,u2

Tne program will copy m blocks from block ny, unit Uy to
block ny, unit us. If m>l, éuccessive blocks are copled. The
information may be of any type and is not limited to texts.
Cauﬁion: L three block vuffer is used so if moving more than three blocks
forward on the same unit care mast be taken to avoid clobbering blocks

which have yet to be read. The range of m is 0 to 1000.

AN




5. Alter Type: AL n,u,X

This program will perform a group of insertions and deletions
to the text at block n, unit,u.i It makes use of the scratch area
and prograns Input'and Copy.A A brief description of its operation
is in order. First the macro is Fyped, then the monitor instructs
Input to place the alteration text at the beginning of the scratch area.
The Kteration Text is then typed in (Fbrmatbdescribed below. ).ended with
an EOT (no ldst block message is typed). Input then enter Alter. )
Ilter reads the Alteration text and the text to be altered (n,u).
It writes the altered text in the scratch area but immediately
. following the Alteration Text (Note: The altered text is never at
the beginning of the scratch area). It then types a message and
conditionally reaters Copy .to return the altered text to block n,u.
In any case the monitor is re-entered.
Mteration Text: Alteration instruction lines and lines to be inserted
in the text make up the Alteration Text. The alteration %hstructions
refer to line numbers in the text to be altered and references must be
in sequence from line O forwafd. The format of alteration instructionslx

is; /i, no blanks are permitited on the line.

nreturn
The program will remove lines from the beginning of line m to the

veginning of line n and will inseft any 1ines of text that follow it

until enother altération instruction is encountered. (or an end of text)

Note: A slash cannot be the first charachter in the Alteration text

unless the line is an alteration instruction (no rgstriction on original text).
Tho message TLLEGAL PROCEDURE is typed if: a block is read which does
not contain the 7575 code, an alteration instruction of an illegal format,

or an alteration instruction of legal format but where mon, n<(the previqus
instructions n), or m>(last line number of the original text).

Ls the process is a merge, line numbering of the old'text is preserved .

)




throughout the one pass, afier completion however, the line numbéring o
is dependent on the alterations madé and a partial print may be used

‘tQ determine line numbpring in places of interest.

I x=0 the text will be returned in place of the original-text if

the length oI the altered text is less than or equal to the original,
otherwise it will be left in the scratch area an& the message |

n BLOCKS REMAIN AT ¥ will bektyped, where n is the number of blocks and
% is the loéation of the first block. If the altered text is returned )
the message n BLOCKS RETURNED will appear. The purpose of this
criterion is to prevent clobbering a block of text immediately followiﬁgiv
the original text. ' If x=1 the text is unconditionally returned, and

if x=2 the text ié not returned.

in example is in order:

11356  means alter block 336, unit 1, x=0

/1,1 says "remove nothing and insert the following lines in front of line 1"

ALPHA

CGARA these three lines are insertc

/5,10  says “remove lines 5,6,7, and insert" but there is nothing to insert.
/12,13 says Yremove lines 12 and insert before 13"

DILEA  this line is substituted for 12

/17,100 presurting a text of say 62 lines, this will remove Zime 17 through
CPSILOE the end of the text and append whatever follows it to an end of text

ZETA (another alteration instruction is illegal as m must be dess than
ETaA or equal to 62 and greater than or equal to 100)
THETA

(eot) whereupon the alteration is performed the text is found to be smaller
and blocks are returned, the message is then typed.
1 BLOCKS REIURNED.,
A note on Grouping: Grouping is an easier way to insert information before
an eﬁiéting text or appending to it. 4s an altered text is never left at
the bezinning of a scratch block it is necessaty to group it to place
it at the beginning (one block of text may be grouped in front of it

safely).



6. Assemble. Type: AS
LINCT has been tied into the LAP Convert Metacommand, which
works quite satisfactorily, through a program which transforms
LINCT text at the beginning of the system scratch area into LAP
text and places the result in blocks 336 forward (LAP input area)
and enters the LAP converter which assembles to blocks 330 333
(270 to 277 for 2K version). The rules of line structure given in the
LAP 111 Manual must be adhered to, obviously a new special charachter
set is necessary as LAP uses a somewhat unusual set. The changed
charachters were chosen for typing convenience and resemblance was
a secondary situation. The following is the list of changes
LAP LINCT
i ;  (semi colon)
p * (asterisk)
u ! (exclamation mark)
! /  (slash)
Origin $ (dollar sign)
Tag : (colon)

OPERATIONAL SAMPLE FROM TELETYPE
IN523, ]

$220

LDA;

1777

ROL 3

:S5H JMP 7B

WRC;10 (note: wunit 1.if from cards)
2/240

RDC ;!

LA

LA=230

JMP *%-5

LAST BLOCK USED S 523

GR523%

AS



7. Execute Type: XE n,M,N,ee00,n

This 1§ not a program but a means of loading and execgting a programe.
The monitor will place the first parameter in location 1375 and
successive locations tﬂereafter, when RETURN is preésed the monitor
ju;ps 4o 1375 and the octal commands typed in will be Executed.
The reason 1375 was chosen’was that one may do an RDC and a JMP and
it will leave parameters in 1400 forward or if a program is to be read |
into quarter 2, three 16's (NOP) may be given and instructiozs-are in j‘
quarter 3.. Overlaying is a hit and miss proposition asmaj;\)'bsape check

on the first attempt to read will cause error.



- A Floating Point Subroutine Package for the LINC

Jeremy Pool

This package was written for programs compiled by ''Blink'', an IBM 7090
Balgol compiler for the Linc, written by Richard Moore; however, it is

completely compatible with any machine language program.

The arithmetic routines - add,multiply, divide - and the float subroutine
are, with minor alterations, those written by J.C. Dill, W. M. Stauffer, and

R. W. Stacy of the University of North Carolina.

In this package the format for floating point numbers is a one word exponent
followed by a one word mantissa. Both words are signed, one's complement
numbers (standard form for the Linc). Zero is designated by a zero exponent
and a zero mantissa. Floating point numbers must be in standard form, so that
the mantissa has an absolute value between 910 220 909 000 and P11 111 111 111.

The decimal point is understood to be between bits 11 and 19 of the mantissa.
In addressing it is always the first word, the exponent, which isv5pecified.

The calling sequence is as follows:

JMP 400
Al
0Ol
A2
o2

An
On
Next instruction
Al is the address of the first operand. Three possible formats for this address

are possible:

Al > 0 ; Al = absolute address of operapd
Al = 0 ; The operand is the floating accumulator
Al < 0 ; Al = indirect address of operand

For indirect addressing, the address is not complemented; only the 11 bit must
be set to 1. Thus with Al = 4063, location 63 contains the address of the

operand, not location 371k,




0]l is the desired operation. Two forms are possible:
Ol < 0 ; Execute the specified subroutine, and then continue to
execute the next specified subroutine.

0l >0 Execute the specified subroutine, which is the last in
the series of subroutines, and return and execute the next
instruction in location p + 1.
Here again, when Ol < O, this is specified by setting to one the 11 bit, not
by complementing the entire number. Thus 4?92 means add and continue to exe-
cute floating point instructions while #9902 means add and return from the

floating point package.

Some of the routines are '"integer' subroutines and assume one of the numbers
involved to be an integer. In this case the actual address of the integer is

specified by the operand, directly or indirectly.

The subroutine codes, their mnemonics, and their explanations are as follows:

(op = operand; FAC = floating accumulator; ac = Linc's accumulator)

CLA Clear and add c(op)=~—=> c(FAC)

]

2. ADD Add c(op)-+ c(FAC) > ¢(FAC)

3. COM Complement compiement of c{op) ——> c(FAC)

Lo MUL Multiply c(op) x c(FAC) > c(FAC)

5. DFA Divide (a) c{FAC) / c{op) ——>c(FAC)

6. DAF Divide (b) c(op) / c(FAC) —> c(FAC)

7. 1AD Integer Add c(op) + c(FAC) ——> c(FAC) ; clop) =T

In the previous subroutine and in some of the following, the operand is

assumed to be an integer (I).

10. IML Integer multiply c(op) x c(FAC) > céFAC) ; clop) = 1

11. DFl Integer divide (a) <(FAC) / c(op) > c(FAC) ; c(op) =T

12. DIF lInteger divide (b) c(op) / c(FAC) ——> c(FAC) ; c(op) =T

13. FIX Fix c(op) is converthd to a fixed point number (an integer), and

‘ is stored in the regular, Linc, accumulator. Numbers are not
rounded; all fractional parts are lost. Any number less than one
is stored as zero. Any number greater than 3777 or less than
-5777( 8) is converted to 3777 or =3777 reSpect:v£§;

4. FIT Float' ‘c(op) is assumed to be an integer. It is converted to a

: floating point number and replaces c(FAC).

15. CLR Clear Storage i) > c(op)

16. MAX Maximum The c{op) is compared with c(FAC). The larger value
replaces c(FAC).

17. MIN Minimum The C(op) is compared with c(FAC). The smaller value
replaces c(FAC).

20. SGN Sign If clop) < @, then =1 ———> cgacg

If c(op) = 9, then 8 ——> c(ac
If c(op) > 0, then 1 — c(ac




3

21. INC Increment c(op) + c(FAC) > c(FAC) and ——=>c(op). This is
the floating point counterpart of Linc%s add to memory instruction.

22. 1IN integer Increment c(op) + c(FAC) > c(FAC) and c(op); c(FAC) = |
Note that in this instruction it is the FAC, not the operand, which
is assumed to be an integer.

23. STO Store c(FAC) ——> c(op)

24, SSP Set Sign Plus Ic(op)l ——> c(FAC)
25. SSM Set Sign Minus -lIc(op)l —> c(FAC)
26. SQT Square root ; #Alopl =——=> FAC

27. IPT Input ; the number inputted on the keyboard ———> op
The number is inputted in decimal and is terminated by a space.
The number may be preceded by a minus sign. Any of the following
inputs are allowable:

27.345 L\
-.0001 &2\

996 £\
-101. 2\
-62, I
AN (=0) _
There is no limit to the number of digits inputted. Pressing
‘'del' at any time during an input deletes what has been entered and
the entire number must be retyped.

30. OPT Output ; the operand is outputted on the teletype in the following
format:

X. XXX, XXX return and line feed

The first four digits are the decimal mantissa and the last three
the characteristic as a power of ten.

Also PKG = JMP400. The mnemonics are used in an assembly program to be described.

If locations 1472 and 37k2 are altered so that they both hold "4276', the teletype
does not return after it has outputted a number; it spaces once. {(Normally
these locations hold "6570")

The actual teletype output routine is included as a subroutine within the package,
so that it can be jumped to from outside the subroutine package. To type a
character, load the accumulator with that character*s teletype code and jump

to location 1742. Control will automatically be returned to p + l. Index
registers 12 and 15 are used by this subroutine and are not restored if one

jumps to 1742. A modification is included for scope output of the same format.

The package occupies all of quarters one, two, and three. Quarter 7 is used

from location 3700 to 3756. All index registers are restored to their previous




value exceptin the case mentioned above.
The floating accumulator is locations 1120 and 1121,

No error detection is provided. Overflow of exponents in arithmetic subroutines
will yield incorrect answers, not error messages. The same is true of

invalid operation codes, etc.

A sample program which calculates——gz——— s which stores the result in the
X =3x

floating accumulator, and which leaves 1, =1, or ® in Linc's accumulator,

depending upon the value of the result, follows:

X Is in 1G
3 (integer) is in IT

locations 24 and following contain LDA
?MP 1000
JMP 24
IT
L1y Loads -3, floating point, into the' FAC

Lop3

16 o
x(x=3) = x“=3x = c(FAC)

Logh
1T
ype

——2— = ¢(FAC)
X =3x

o}
2020

Determines sign of answer Exit because the 11 bit = 0

A

J
B} e

)

}

5

Next instruction




Program follower

To use:

Read in program to be tested and execute it once.

Then read it out temporarily on tape and read it back into memory,
in executed form, into blocks of upper core corresponding to those
blocks of lower core where the program normally operates, i.e.,

quarter O into quarter 4, 1 jnto 5, etc.

On sense switches set the quarters which the program uses (actual lower

core quarters).

On the right switches set the address of the first executed instruction.
Read in the Program follower and start 20.

When the program halts locations 20 and following will contain the

locations of your program which are instructions. The following is an

example of the final output:

~ Joc. contents
20 20 This means instructions were
o1 176 contained in locations ’
20 through 176 and 405
22 405  through 760 of your
o3 760 programi
24
25 o)

26 0
The program follower is not perfect. It will not catch returns from
subroutines where the return address is manipulated to be anything
besides p+l or a constant return address. It will not catch jumps
executed by pulling addresses out of.a jump table. It will assume that
all XSK instructions can proceed to both p+l and p+2, while this is

not always true. Therefore, the results may contain a few locations




which are daté and may omit locations which contain instructions.

The program follower is just that; it does not tell you what parts of
your program were meant to be instructions, it tells you which
locations can be reached, as instructions, by the various jumps and
branches of your program. Thus it provides a good method for

troubleshooting a program by showing you where your program actually
can go. '



Mnemonic dump

To use:

Read program to be typed into upper core in quarters corresponﬂing

to the lower core location of the program, i.e., a program which

runs in quarters O and 2 should be read into quarters 4 and 6.

Have tape JP on unit 1.

Read Bl 310 into quarter O and start 20.

Type on the kbd one-digit numbers corresponding to the quarters

used by the program. For the case mentioned above, type O space 2.
Separate these digits by spaces. '

Then type in the locations which are instructions in the form specified

belcw.

IT the program postulated above ran from 20 to 360 and from
1000 to 1377 the entire input should be as follows:

cA2A ,0020A936oa,w EOL

Quarters Instruction Locations
Location ® may not be specified as an instruction location

Sense switches control the output format as follows:

R
All set to ® = single column output
SW 1 at 1 = 2-column output, numbering spaced by 200
SW i, 3at 1l = 2-column output, numbering spaced by 100

SW i, 2, 3 u L-column output




]

Appendix:

B

Log Book




}W& /é’, /
{/ZV/’—M 4W /z/-éx,e_ 72&0’//7/
TZ?‘ 7/75/ (/L%M 7/7{/ V;igﬂ;éqgl [//5/‘7 /z%

eV

~/ 7 - // / N Yy - i
(L7, T T e, o




AQrpre /ﬁu; — /o . /47/7//0 /"C /%chf/ P

O 74 /‘Zém M g/&w/u/ / (m/v Zeie //\d%cg
%&(—wyz/«é

%& ///146/1/ /’/{/"’W /ZL(A//g /1/)— “/9/01_, V7 7

~ i/QVI/Vv/L Pt it W,V/Q/uc o /ﬁm

‘//(/M % a2 /é@z/c@'»&»,x/c?ﬂ /‘//w = /LW

o e 2P e & atpe le Aipy

%w P /4(/5/ /Z/gy "—x/J. a///w //.-/,a/%//( /,,,,,Q//

V4
&—7&8 @V / —Z -/"’19“7 _/&;/f/ﬂffﬂ, f

VA (4/ Z7_ M/ﬁ /K.:K/ e B A Mé«ﬁ«/’// 4&/

M/ Appert et 2207 ,an/ ,a///@,‘éé/ L. STC
/@//7/// /Z/’L /é&{/@&// /9/7\ 5//%/1//& K/ /4.4 %‘/
M(/,b [‘ /g}» e /Mf (%///J,L/// 44/, /%&W W
I;tﬁp /\//yz/z/ Aoz 52// AT C“?/L ey R
MM&/L 2 S B e S O B S O //[/./V ~ /5/'7'9/1, £ 772&3}2{%

/[M Z:" W/ﬂs’m R A ////w« ”///
%"5 (A /Cf//./w../ s ;/L/r A M /M

W ﬂk L%Zé\« /A @/,V 2 - Qyéﬂ% A &%@ /%
%’/Q /é n/z//a// //«/%{VA 7&/&& .,,uz/f—é‘

/“&‘5%/// e ”/”////f»-afﬂ /x,,// = /M/IJW
Fizg, %{/‘/ / L 4 //_/‘— A /k/;/(;c/f/// //fj—z,«,{/ /KC@
/é@/ /’7//& //7"7/544 /Z/éK %4/ W:Z
e /W// 2 AL £

%&// g /@/ AN o /‘%

Afc’ O e D W B )

/é/ / A ///z/ /M?/xf/ %éz/é f /4/(41,/ Ry
T ?’ %z//wq/ //5’3 / / /Wl S O %/’4/%,
é&;éfwcc /m,/& //4// //(Zﬂ — Wb /g
2. /é //{/1/// /{/“7‘: 2 /’V&/ 27 ZAdg L, W
Arir ,oé/z /%/V/MW//’//’?»/% %e ”% /Mpwz/
7 k/z/;/z/WZ é@/ Ly g C&h/ﬂ{ /téf — G bé

//{/é s /z/z/f/z//cxm &lr[ &Q/@/M/W7'
ey S S S,







NN E ST ALE DR AT Y

7SS
9’/5

oIS

birg 7oy
Al e

D/Bﬁ/a&y

APO - ST
/r






